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ABSTRACT

Phantom pain is a chronic pain that is experienced as a vivid sensa-
tion stemming from the missing limb. From traditional mirror box
to virtual reality-based approaches, a wide spectrum of treatments
using mimic feedback of the amputated limb have been developed
for alleviating phantom limb pain. In our previous work, Mixed
reality-based framework for MAnaging Phantom Pain (Mr.MAPP)
was presented and used to generate a virtual phantom upper limb,
in real time, to manage the phantom pain. However, amputation
of the lower limb is more common than that of the upper limb.
Hence, in this paper, on top of demonstrating the reproducibility of
the Mr.MAPP framework for upper limb, we extend it to manage
lower limb phantom pain as well. Unlike an upper limb amputee, a
patient with lower limb amputated is constrained to perform the
training procedure in a sitting posture. Accordingly, virtual training
games are designed for lower limb exercises with sitting posture
such as knee flexion and extension, ankle dorsiflexion and tandem
coordinated movement. Finally, the technical details of the system
setup for playing the training games are introduced.
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1 INTRODUCTION

Phantom pain is a frequent consequence of amputation or paralyzed
limbs. Patient experiences vivid sensations from the missing body
part such as frozen movement or extreme pain. Research [5, 14]
indicates that neural plasticity plays an important role in the pa-
tient’s experience. They show that the patient’s brain needs time
to learn that his/her limb is paralyzed or amputated.

Our Mr.MAPP framework [2] is an approach used for upper limb
phantom pain management in a virtual environment. The system
uses RGB-D camera (Microsoft Kinect V2) to capture and generate
a 3D model of the participant in real-time. A virtual phantom upper
limb is generated by replicating the intact counterpart. Along with
the 3D mesh, the generated model contains skeleton based collid-
ers which are used to interact with the virtual objects. The entire
3D model, along with the phantom limb are rendered, say on an
HMD such as Oculus Rift. In this paper, we extend the Mr. MAPP
framework for lower limb phantom pain management. The phan-
tom limb is controlled by the intact counterpart, same as before.
The patient is immersed into virtual gaming environments tailored
for 3 different training games - knee extension and flexion, ankle
dorsiflexion and tandem movement. The patient sits on a chair,
wearing an HMD, and plays the 3 games which are developed to
help relieve upper or lower limb phantom pain. The pipeline of the
Mr.MAPP framework is shown in Figure 1.

2 RELATED WORK

Many approaches have been developed for alleviating phantom
limb pain. Table 1 shows a summary of these approaches based
on different characteristics such as display device used, source of
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Source Year | Display| Illusion | Target | Merge with | Interact Device Worn Control | Point
Device | Source Limb rest of the | with  Vir- Limb of
body tual Object View
Ramachandran | 1996 mirror | mirror re- | upper yes no no intact first
et al. [14] box flection limb
O’Neill et al. [9] | 2003 screen | pre-built | upper no no sensing glove intact first
3d model limb
Desmond et al. | 2006 screen | camera upper no no sensing glove intact third
[4] limb
Mercier et al. | 2009 screen | camera upper no no no intact first
[7] limb
Cole et al. [3] 2009 screen | pre-built | both no no sensing electrodes | stump first
anima-
tion
Murray et al. | 2010 HMD pre-built | upper no yes sensing glove with | intact first
[8] 3d model tactile feedback limb
Ortiz-Catalan | 2014, | screen | pre-built | upper yes yes sensing electrodes | stump third
et al. [10, 11] 2016 3d model
Sano et al. [15, | 2015, | HMD pre-built | upper no yes sensing glove with | intact first
16] 2016 3d model tactile feedback limb
In et al. [6] 2016 screen | camera lower yes no no intact first
limb
Bahiratetal. [2] | 2017 HMD RGB-D upper yes yes no intact third
camera limb

Table 1: Summary of phantom pain management approaches based on different characteristics

Figure 1: Mr.MAPP framework pipeline

illusion, target limb, virtual object interaction, control limb and
point of view. Our Mr.MAPP framework [2] is the first method that
uses RGB-D cameras to generate the virtual limb in real time.

3 EXTENDING MR.MAPP FOR LOWER LIMB
AMPUTATION

Although the majority portion of the Mr.MAPP framework can be
directly used, the local skeletal coordinate system to mirror the
lower limb should be redefined appropriately. Because with the
skeletal coordinate system defined at spine joint Psp, the shoulder
movement may result in the unnatural lower phantom limb gener-
ation. Hence, we define a coordinate system for the participant’s
skeleton, with origin at the hip center joint Py (see Figure 2) as:

Py =Py B

X y _ Xs XYs
s — s Ys —
|P1p, = Pral
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Os = Py (1)
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Figure 2: Skeletal coordinate system for phantom limb generation

where Py and P,j, are left and right hip joint, Ps,, is spine joint,
Py, is a hip center joint.

Figure 3 shows the block diagram of the lower limb mesh gen-
eration using Mr.MAPP. First, raw depth and color data streams
generated from Microsoft Kinect V2 are filtered by depth to extract
the point cloud of the subject in the foreground [12]. Second, the
extracted point cloud is segmented based on the distance between
skeleton segments and each point [13]. The distance is estimated
by a Voronoi decomposition based approach [1]. In Figure 3, re-
sulting segmentation is presented using different color. Third, to
achieve a realistic illusion, points corresponding to the affected
limb should be removed. Hence, the manually specified affected
limb segments are removed from the segmented points. Next, the
intact counterpart segments are mirrored to create an illusion mesh
of the affected limb. A local coordinate for mirroring process is
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defined using left shoulder, right shoulder, spine and shoulder cen-
ter joints in the skeleton data. After that, points in intact limb are
transformed to the local coordinate and reflected in the coordinate.
Then, the generated points are transformed back to the real-world
coordinate to obtain the mirrored points representing the phantom
limb. However, some of the data points are lost during back pro-
jection because of numerical round-off errors. Average filtering is
performed as the last step, to fill these holes and obtain the final
complete body mesh.

6 b 0300

Affected Limb Removal Mirrored Hole Filling

Original Foreground Segmented

Figure 3: Block diagram for real-time phantom mesh generation

4 LOWER LIMB TRAINING GAMES

We developed 3 different training games for lower limb training,
each tailored for a specific exercise - (i) knee flexion and extension,
(ii) ankle dorsiflexion & (iii) tandem coordinated movement. Bubble
Burst, pedal and piano are the 3 games that are developed corre-
spondingly. In each game, the player needs to sit on a chair and face
the Kinect camera ensuring that the camera can see the lower limb.
For proper generation of the phantom limb, it is recommended to
sit straight and keep arms slightly away from the legs.

4.1 Bubble Burst Game

The original ‘Bubble Burst’ game shown in Mr.MAPP [2] is modified
for lower limb training. In this version, bubble generators on the
floor are moved closer to the user so that they are reachable by foot.
The player needs to perform knee flexion and extension movements
as shown in Figure 4 (a). The game layout is shown in Figure 4 (b)
& (c). As only the front two channels are easily reachable with foot,
we enable bubble generation only from these two front channels.
The goal here is to burst the bubbles while performing knee flexion
and extension.

(@

Figure 4: (a) Knee flexion and extension exercise - Picture Courtesy
https://human-anatomycharts.com/v/categoryknee-extensors.asp
(b) real world setup showing player with one lower limb hidden
from camera (c) participant playing the ‘Bubble Burst’ game
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Figure 5: (a) Ankle Dorsiflexion exercise - Picture Courtesy:
https://orthonc.com/uploads/pdf/Ankle_Foot_AROM.pdf (b) player
wearing a blue shoe cover on the foot of the target lower limb (c)
participant playing the ‘Pedal’ game

4.2 Pedal Game

The second game is called ‘Pedal’ game, which is designed to per-
form the ankle dorsiflexion exercise. To enhance the effect of the
small motion on feet, the system will target to the blue color on
the feet. That’s why a blue shoe cover is required to be worn by
the participant in the game, as shown in Figure 5 (b). If the feet are
buried under the ground, placing a black box or step stool to elevate
the foot could make it more visible to the depth camera. Figure 5 (b)
& (c) show the layout of the game. The pedals in front of player’s
feet are the target colliders. As the patient presses and releases the
pedals, the balls on both sides will start moving upwards.

4.3 Piano Game

In the ‘Piano’ game, the patient is asked to perform a random
stomping movement while seated on the chair. There are different
piano keys popping up randomly on the floor and patient must hit
the popped key with stomping action. As the correct key is hit, a
certain musical note will be played, and the key will disappear with
sparkles. The score will increase with every correctly hit key. If any

Figure 6: User playing the ‘Piano’ game for lower limb training
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key is missed, the score remains unaltered. The game can be closed
by pressing the escape key or once the time limit has exceeded.
Figure 6 shows a user playing the ‘Piano’ game.

5 SYSTEM SETUP

System Requirements: To use the Mr.MAPP system, we need a
MS Kinect V2 camera to capture the person, a computer for running
the games and an Oculus Rift for rendering. For the Kinect to work,
we need a computer having Windows 8 or newer, 64-bit (x64) dual-
core processor, 2GB RAM and a USB 3.0 port. Whereas, for the
Oculus Rift to work, we need Intel i3-6100 / AMD Ryzen 3 1200,
FX4350 or greater processor, NVIDIA GTX 960 4GB / AMD Radeon
R9 290 or greater graphics card, 8+ GB RAM, Windows 10 or newer,
1x USB 3.0 port, plus 2x USB 2.0 ports and a compatible HDMI 1.3
video output. The compatibility tool from Oculus website can be
used to check the system compatibility. For our setup, we use a
laptop with Windows 10, Intel i7-6700HQ x64 processor, 16 GB
RAM, NVIDIA GTX 1070 8GB, 1 HDMI, 1 USB 3.0, 1 USB 2.0 and 2
USB-C ports which can be used with USB 3.0 to USB-C adapters.

Software Requirements: To capture the person, Kinect for
Windows SDK 2.0 needs to be installed. The ‘SDK Browser 2.0
(Kinect for Windows)’ can be used to check if the Kinect is con-
nected and able to capture the person. Specifically, one can use
the Body-Basics demo to see the skeleton of the person and ad-
just the height and distance accordingly. The Oculus Rift Software
needs to be downloaded and installed, to work with the Rift. The
software provides on-screen instructions throughout the setup,
to arrange the sensors at appropriate positions. Apart from the
basic software requirements for the Kinect and Oculus Rift, the
computer needs to have CUDA 9.1 installed. To play the games,
our system also needs other library dependencies such as OpenCV
3.4.0, Eigen 3.3.4, Glm 0.9.8.5, SDL2 2.0.7 and glew. Executables
for all the 3 games, along with the required pre-built dependen-
cies, are available to download at https://utdallas.box.com/s/
9h9mbiitvbbn7jfs7hhnd9sg16xb889q. The folder named ‘HU-
NAD5’ contains the above mentioned pre-built dependencies, which
can be placed at any location on the computer. The ‘setPaths.bat’
needs to be run (double-clicked) to add the dependencies to the
environment path variable. The folder ‘Games’ contains the games
and other necessary executables, which can also be placed in any
location on the computer. There are 3 batch files, namely ‘PlayBub-
bleBurst.bat’, ‘PlayPedal.bat’ and ‘PlayPiano.bat’, that can be run
to play the corresponding games. Once any of the 3 batch files is
run, the corresponding game will open, and the user can play the
game as explained in Section 4.

Physical Setup: The user needs to make sure to have a clear
space with enough room to move around. The Oculus setup has a
‘Guardian System’ that can be used to create a safe boundary area
for the user to play the games. Kinect can capture the person in a
range of 1-5 meters. In a typical arrangement, the Kinect is kept
about 1 meter high and the chair/person is about 2.5-3 meters in
front. This ensures that the person is completely detected and can
be used for phantom limb generation. As mentioned in Section 4,
the user needs to sit on a chair to play any of the 3 games. Once
the game is on, the user needs to press the virtual ‘start’ button to
actually play the game. This can be done using the buttons ‘A’ or
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X’ on the touch controllers or using a mouse. However, the button
should only be pressed after making sure that the entire body is
visible, and that the user is ready to play the game. Even if player
is not exactly on required center spot in the game, s/he will be
teleported to the correct virtual location when the ‘start’ button
is pressed. During the gameplay, the participant can refine their
sitting position by slightly moving the chair, but it is recommended
to not make any major movements. Once the game has started, the
user needs to perform the correct exercise motion to successfully
complete the task of the game.

6 CONCLUSION

In this paper, we have extended our Mr.MAPP framework [2] to
be used for lower limb phantom pain management. We developed
3 different games and have made the executables, along with the
library dependencies, publicly available for download at https:
//utdallas.box.com/s/9h9mbiitvbbn7jfs7hhnd9sg16xb889q
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