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A B S T R A C T   

Digital twins are virtual representations of subsystems within a system of systems. They can be utilized to model 
and predict performance and condition degradation throughout a system’s life cycle. Condition based mainte
nance, or the performance of system maintenance based on the subsystem states, is often facilitated by the 
implementation of digital twins. An open challenge is selecting the subsystems that require digital twins. We 
establish a generic process for determining a set of priority-based system components requiring digital twin 
development for condition based maintenance purposes. The priority set, which we term the “triage” set, rep
resents the set of components that when monitored through a digital twin lead to the greatest increase in total 
system reliability and simultaneously represent the minimal cost set of components for implementing a digital 
twin. While we focus our process on an unmanned underwater vehicle (UUV), where we frame the design 
problem as a multiobjective optimization problem utilizing experimentally determined data and metrics from the 
model of a real UUV system, the process is generic enough that it could be utilized by any system looking at cost 
and reliability estimates for leveraging digital twin technology.   

1. Introduction 

We explore the interplay between total system reliability and the 
development cost for building a digital twin for an SoS. Industries that 
depend on complex SoS for accomplishing hazardous or laborious tasks 
that would otherwise place humans in harm require reliable and robust 
SoS that function expectedly. Medical robotics, the airline and auto
motive industries, and smart manufacturing facilities are a few examples 
of SoS that perform tasks to mitigate the risk to the human. Often digital 
twins, a term first coined by Michael Grieves, facilitate this reliability 
and enhance the robustness by providing SoS operators and maintainers 
with additional system awareness (Grieves, 2005; Daneshmand et al., 
2017; Kousi et al., 2019; Tao et al., 2019a). Digital twins are virtual 
representations that mimic the subsystems and dynamics of their 
real-time counterparts. Digital twins have proliferated in use because of 
their predictive capacity for the degradation of their real-time systems 
and are now a central part of product life cycle management (Grieves 
and Vickers, 2017). However, many legacy SoS still rely on traditional 
methods of reliability management to mitigate risks through a variety of 
maintenance strategies, including preventative, reactive, and condition 
based maintenance. 

Preventative maintenance entails performing routine maintenance 
tasks on a fixed schedule (Swanson, 2001). This can lead to significant 
waste of labor, since component failures typically occur as a result of the 
condition of parts (Endrenyi et al., 2001). If the condition of the part to 
be replaced has not yet degraded to the point of failure, then the 
replacement part is wasted as is the labor to replace the part. Reactive 
maintenance means performing maintenance based on events, such as 
the failure or degradation of a mechanical part to the extent that it is 
non-functional (Karuppuswamy et al., 2006). While the typical main
tenance schedule of an SoS includes a combination of both preventative 
and reactive maintenance, alternative methods are used throughout the 
airline, automotive, and other commercial industries that observe the 
“condition” of components to trigger maintenance tasks (Li and Nilkit
saranont, 2009; Prajapati et al., 2012; Zou et al., 2019). This condition 
based maintenance provides an opportunity to reduce labor and parts 
costs, since fewer parts are wasted and labor is optimized on an 
as-needed basis. Visual inspection can provide some degree of accuracy 
in assessing the condition of certain external components, for example 
the tread on a tire of an automobile (Horner et al., 1997). A newer 
approach offers more disciplined and less ambiguous condition assess
ments. This is condition based maintenance through the use of a digital 
twin. To minimize the need for visual inspection, digital twins are 
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utilized to monitor the condition of components in critical systems, like 
jet engines, fuel pumps, and robotics for example. 

Digital twins have taken a leading role in advancing manufacturing 
and complex SoS throughout the Industry 4.0 movement and the pro
liferation of the Internet of Things (Kusiak, 2017; Fuller et al., 2020; 
Koulamas and Kalogeras, 2018). Given the widespread adaptation and 
integration of multiple data sources throughout a system’s lifecycle, 
including sensor performance, testing and evaluation, and maintenance 
data for example, numerous technologies, among which the digital twin 
belongs, integrate and aggregate these data sources into a uniform pic
ture of a system’s state (Qi. and Tao, 2018). Tao et al. provide a detailed 
account and survey of digital twin technology, including numerous ex
amples from industry that illuminate the utility of digital twins for 
predicting condition degradation within a SoS (Tao et al., 2019b). 
Notably, Tao et al. outline how General Electric (GE) has implemented 
digital twins for their wind turbine systems (Lund et al., 2018a, 2018b). 
The total digital twin system constitutes the sensor network by which 
the physical wind turbines are connected and the network connection to 
the cloud-based turbine model. The cloud models are constantly upda
ted with performance data collected across the physical system network. 
The feedback from the cloud model can then be utilized in turn as an 
optimized controller for the wind turbines, creating an optimized feed
back loop facilitated by the so-called smart connectivity. GE’s digital 
twin model emphasizes a general standard that defines a digital twin 
system: There is a physical system, a virtual system, and connection 
between the virtual and physical system (Glaessgen and Stargel, 2012). 
Another interesting example is the development of a digital twin for a 
robotic surgery system (Laaki et al., 2019). While Laaki et al. utilize a 
robotic arm as a substitute for a real time system, they mention the da 
Vinci Surgical System, manufactured by Intuitive Surgical, Inc., as a 
suitable candidate that would benefit from the digital twin. Boeing has 
begun utilizing its in-house developed discrete event simulation model 
which incorporates material procurement data and manufacturing 
automation performance data. By using this data and the simulation 
tool, Boeing has an end-to-end supply chain model for its manufacturing 
businesses. Together these represent the digital twin (Hilton and 
Needham, 2019). Siemens, the German manufacturer, utilizes numerous 
digital twin models for its production processes. This underscores the 
key idea behind digital twins: There is not one digital twin that governs 
or represents an entire system; rather, a digital twin comprises numerous 
distinct and potentially different models based on the function of the 
individual subsystems. In Siemens’ case, they utilize finite element 
models for stress and strain digital twins in their production line (Tao 
and Qi, 2019). For further examples taken from industry, see Liu et al. 
(2020). 

For this paper, we choose the unmanned underwater vehicle for a 
case study, since there is a growing dependence on these systems from a 
variety of industries that directly remove humans from harm as a result 

of leveraging UUV technology. UUVs, or autonomous underwater ve
hicles (AUVs), have witnessed significant growth in their utility for a 
variety of industries, including sea-floor and oceanographic surveys, 
deep-water drilling platform inspections, ship hull inspections, bridge 
maintenance and surveys, and various academic uses (Hylton, 2020; 
Whitcomb, 2000; Fletcher, 2000; McFarlane, 2008; Fletcher and Wernli, 
2003; Miller, 1996; Kukulya et al., 2010). The wide adaptation and 
continued use of UUVs indicates a high level of dependence on these 
platforms for critical tasking—tasking which would otherwise place 
humans in direct risk of harm (Thieme and Utne, 2017). This depen
dence largely requires reliable and available systems that can be ex
pected to function according to specifications. Runtime mission failures 
present potentially catastrophic consequences for the operators, while 
presenting a challenging task to mitigate these risks for the UUV 
maintainers. A UUV presents a very challenging task for traditional 
maintenance strategies and CBM through visual inspection, since access 
to internal components is limited or requires significant effort to inspect. 
The internal components are housed inside either a free-flooded, the hull 
floods with water for buoyancy control, or a hermetically sealed hull, the 
hull is both air and water tight. To access the components housed inside 
the sealed hull requires breaking the seal and accessing the components 
in a confined space. External components can be inspected for wear and 
condition degradation, but these are also challenging since functionality 
can be degraded, without visual cues. These challenges can largely be 
subverted by the use of digital twins for CBM purposes. 

The twin is a digital replica that maintains data and dynamics in
formation in parallel with the real-time system. Building a twin typically 
involves selecting a data- or dynamics-driven model for every individual 
component (Liu et al., 2012; Coraddu et al., 2019; Kim et al., 2020). 
Data-driven models rely on historical system data for training machine 
learning models. Dynamics-driven models utilize first principles and 
physics-based modeling for creating models that are data independent. 
The particular methodology depends on the intended use. For example, 
a data-driven model which utilizes a machine learning process is 
particularly suited for predicting component degradation. Hong et al. 
demonstrate the use of one such technique, a special ordered map, 
which through unsupervised machine learning they train to extract 
degradation of ball bearings (Hong et al., 2014). Alternative methods 
have been used which provide performance estimations under unknown 
conditions. These dynamics-driven approaches offer higher degrees of 
predictability than their data driven counterparts, since they model 
time-based dynamics. These, too, update model parameters from the 
real-time system but do not depend on historical performance data for 
their predictive capacity. Hanachi et al. derive a physics-based model for 
capturing the performance of gas-turbine engines, with applications in 
the airline industry (Hanachi et al., 2015). Their work demonstrates one 
instance of the applicability of a model-based approach for predictive 
capacity. Others have developed novel techniques that give hybrid 

Nomenclature 

CBM Condition based maintenance 
DT Digital twin 
GANBI Genetic-algorithm-based normal boundary intersection 
MBSE Model-based systems engineering 
MOOP Multiobjective optimization problem 
SoS System of systems 
TDT Triage digital twin 
UUV Unmanned underwater vehicle 
fmin Convex hull of individual minima for MOOP 
δR′ R Reliability improvement function 
C Set of known design and development costs for digital 

twins of subsystems 

R Set of known reliabilities of subsystem components 
R

′

Known reliabilities for components with corresponding 
digital twin 

Ctot Total digital twin implementation cost 
Ngen Number of generations in evolutionary algorithm 
Npop Size of population in evolutionary algorithm 
Npts Number of points segmenting line connecting individual 

minima 
L Vector of component layer information 
N Total number of system components 
r∗ Pareto optimal subset of component reliabilities 
s∗ Triage digital twin components  
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performance. Lei et al. use a model-based approach for remaining useful 
life (RUL) predictions, for which they provide experimental evidence 
demonstrating the method’s efficacy on ball bearings. The challenge 
with leveraging data-driven models is the necessity for copious amounts 
of high quality data. For the airline and automotive industries, which 
typically have experimental apparatus in place, it is decidedly easier to 
produce the data for predictive maintenance models. However, for 
systems like UUVs, the presence of high quality data is generally lacking, 
since it is challenging to extract failure mode data from these systems, 
when failures occur at run-time and below the sea surface. There are two 
primary mechanisms for handling this case: machine learning algo
rithms that handle limited training data and better experimental 
apparatus. 

Alternative machine learning models exist to leverage digital twin 
technology without the use of high-quality or properly labeled data. The 
work of Tan et al. demonstrates the use of one such technique to predict 
condition degradation of a ship’s propulsion system without properly 
labeled data sets (Tan et al., 2019, 2020). Alternative test setups can be 
fashioned to run repeated experimental tests to extract relevant per
formance data under typical operational mission profiles. See Fig. 1 for 
an example experimental setup. In the figure, an oscilloscope is con
nected to the UUV, while the UUV’s autonomy computer is running in 
order to collect sensory signal data on the workbench. User interface 
components are connected directly to the autonomy computer to 
manipulate simulation characteristics on the bench. The UUV shown in 
the figure is the system we consider for the case study in this paper. 
Section 3 provides a detailed overview of the system. Even these setups 
lack in realistic simulation since external failures can occur from the 
UUV hitting something in the water or during docking and deploying the 
UUV from a ship. The repeated insertion and extraction (deploying and 
docking) of the UUV can create significant wear on the system, because 
many of the external components are very sensitive, such as the fins and 
propeller. To accurately represent these mechanical failures is chal
lenging in a benchtop environment. The apparatus shown in Fig. 1 is 
only capable of testing the electronic components and as such falls short 
at capturing the entirety of the potential failure modes. 

Here we are not considering the particular model type, only that 
some model will be selected to serve as the twin. We do make the 
distinction that the digital twin for an entire system comprises any 
number of individual digital twins for the subsystems being monitored. 
Each subsystem has its own model requirements (data- or dynamics- 

driven) and has its own requirements for data acquisition and physical 
interfaces. Data acquisition establishes the means by which the twin 
acquires data from the real-time subsystem. This could be through 
client-server style resources, as in the Robot Operating System (ROS), or 
exchanging data through some other means, via Ethernet, for example 
(Stanford Artificial Intelligence Laboratory et al.). Physical interfaces 
indicate the required ports to facilitate the data acquisition process. 
These could be any physical connection such as Universal Serial Bus 
(USB), Ethernet, or other serial port connections. 

There are two pathways to leveraging digital twin technology for 
CBM purposes: First, the system designer can build a twin for each 
component, incorporating the necessary data and physical interfaces 
into the system design. Second, the system can be retrofitted with the 
information acquisition resources (data and physical interfaces) to 
extract the relevant information to support the twin. The former requires 
a significant amount of design effort, since the system designer must 
meet the standard system specifications and requirements, as well as 
incorporate the acquisition resources for the digital twin for the relevant 
components. The second pathway provides a means for retrofitting the 
system with digital twins. It also provides attachability, meaning legacy 
systems that are critical for removing humans from direct harm can still 
benefit from digital twin technology. The second also has the advantage 
of an established (perhaps inefficient) maintenance schedule that can be 
optimized from the incorporation of digital twins for CBM purposes. 
However, the questions unanswered from the perspective of decision 
makers and developers alike remain.  

• What components should have digital twins? 
• How should the system be retrofitted with the data acquisition re

sources for the digital twins? 

We address the cost issue associated with incorporating a digital twin 
by developing a novel approach that incorporates both MBSE and 
multiobjective optimization to enable the selection of appropriate 
components for digital twin representation. These “triage” components 
produce the largest increase in total system reliability and minimize the 
cost-entrance hurdle for leveraging digital twin technology. We utilize 
the term triage to reflect the fact that some components are prioritized 
over others, much like the triage process utilized during disaster relief by 
first responders. Prioritization of limited medical treatment resources 
optimizes the care given, ensuring that those who qualify and meet the 
selection criteria receive treatment first (Koenig and Schultz, 2010). 
Though the criteria change based on the triage system used, the idea 
remains the same. Those who benefit most from treatment receive pri
ority over those who would benefit the least, such as someone with 
significant blood loss over someone with a minor cut. Likewise, certain 
subsystems yield larger and more significant benefits to total system 
reliability than other subsystems. 

The paper is organized as follows: In Section 2 we explore established 
research for reliability predictions, redundancy allocation, and reli
ability optimization. In Section 3 we introduce the platform used for 
modeling a minimalist UUV system, as well as a basic description of the 
vehicle and additional reference data. In Section 4 we introduce our 
MBSE approach, including the language and modeling used to develop 
the model for the UUV system, as well as challenges in implementing 
MBSE retroactively. In Section 5 we explain in detail the reliability 
analysis and demonstrate results from applying our process to the UUV 
under test. We conclude the case study in Section 6 by commenting on 
the implications of the case study for the field of UUVs and how the work 
can be used to inform the TDT design process. We address the implica
tions on the work for the field of reliability studies and how the process 
generalizes for arbitrary SoS looking at implementing a TDT. 

2. Related work 

Much of the existing literature in the fields of redundancy allocation 

Fig. 1. (Color online) The UUV system under test with experimental apparatus. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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and reliability predictions offer technically rigorous mechanisms for 
improving SoS reliabilities through the introduction of redundant 
components and sophisticated methods for predicting and optimizing 
SoS reliability. As a result, these methods provide a breadth of estab
lished research that can be used for a variety of SoS. Our contribution is a 
coupling of an MBSE approach and an MOOP, providing a simplified 
process that incorporates data from a variety of stakeholders, system 
maintainers and operators, to guide the reliability improvement anal
ysis, and frame the discussion with decision makers by providing 
candidate subsets for TDT implementation. Our specific contributions 
are as follows: 

• A novel methodology to prioritize and select a triage set of sub
systems that comprise the digital twin of the total system  

• An MBSE approach that elucidates the necessary data acquisition and 
physical interfaces that must be established for future digital twin 
development  

• A reliability analysis based on the application of our methodology to 
a case study on a UUV  

• Qualitative analysis of the implications of our methodology on the 
development of next-generation unmanned systems on the TDT 
design process 

We will now discuss the state of the art in digital twin development 
and reliability improvements for SoS, and how they are augmented by 
our methodology. Biggs et al. introduce the contemporary challenges in 
utilizing SysML as the primary MBSE language to include reliability 
considerations in an MBSE effort, early in a project’s life cycle (Biggs 
et al., 2018). They advocate for the inclusion of new language concepts 
that extend SysML to better model reliability requirements than are 
currently possible. At the time of this authorship, we are not aware of the 
inclusion of these concepts in the SysML standard. Their work is notable 
because they address several issues that we have encountered, including 
the tracking of reliability and safety data across different documents and 
spreadsheets. These are challenging to maintain and often the critical 
information is lost. To mitigate this challenge, we capture reliability 
data directly in the MBSE model. As we conduct discussions with the 
system maintainers and architects, this information is tracked and can 
be updated as the model is updated throughout its life cycle. Additional 
techniques are utilizing the central structure that MBSE provides for 
conducting failure modes and effects analysis (FMEA) (Huang et al., 
2017). Our choice in using MBSE for modeling complex SoS is supported 
by the use and acceptance of several organizations (D’Ambrosio and 
Soremekun, 2017; Mitchell, 2010). Given the complexity of many SoS, 
MBSE is gaining traction across organizations that would like to simplify 
system life cycle maintenance, since it unifies many traditionally 
disparate data sources and documents into one accessible and traceable 
location. 

Several strategies are used to improve system reliability. One such 
strategy is the introduction of redundant components. By introducing 
redundant components, or backups, the failure of the component is 
mitigated by these alternates. Indeed this is an integral part of robust 
system design and the topic of numerous papers on designing for reli
ability (Rochlin et al., 1987; Kim and Kim, 2017; Muhuri et al., 2018). 
An example is the electronic flight data recorder or black box used in 
commercial airplanes. The electronic flight data recorder tracks and 
records flight data and system diagnostics. It is recovered after airplane 
crashes and used to provide investigators with vital system information 
leading to the failure and crash. The data recorder is often installed with 
a redundant data recorder to improve the chances of finding the device 
in a crash and to improve the reliability (Downer, 2011). A challenging 
problem is determining how many redundant components should be 
used to achieve a desired level of reliability. This is the redundancy 
allocation problem for parallel subsystems. Coit and Smith introduce a 
genetic algorithm for the redundancy allocation problem in parallel 
subsystems (Coit and Smith, 1996). The genetic algorithm of Coit and 

Smith scales well for large systems and offers a unique formulation for 
determining redundancy levels and searching the component 
trade-space. As a consequence, they can quickly identify the level of 
redundancy required to achieve a stated level of reliability within cost 
constraints. Our work seeks a similar calculation, except that we are not 
considering parallel subsystems exclusively, and we do not have reli
ability requirements. Muhuri et al. provide a detailed approach to the 
redundancy allocation problem. They go beyond the work of Coit and 
Smith by accommodating traditionally challenging trade space param
eters such as physical dimensions and weight of redundant components 
through fuzzy parameters in their optimization routine. The challenge 
with such an approach is utilizing this retroactively. While this is an 
excellent approach when utilized early in the design phase of a system, 
existing components are largely fixed and the system has been optimized 
to accommodate those components. Fundamentally, the reliability can 
only be changed through a more intelligent maintenance routine such as 
a CBM approach. Yeh and Fiondella expound in great detail on a 
redundancy allocation application in computer networks (Yeh and 
Fiondella, 2017). They utilize a simulated annealing algorithm to solve 
the allocation problem. Garg and Sharma perform a strikingly similar 
analysis as our work. They utilize a particle swarm optimization algo
rithm to solve their MOOP, which is a bi-objective problem maximizing 
reliability improvement from the introduction of redundant compo
nents. They also minimize system design cost (Garg and Sharma, 2013). 
We also optimize for a reliability difference, which is the difference 
between the base system and the new proposed system with digital twins 
for CBM purposes. The work is distinct in that they minimize the cost for 
adding the redundant components, whereas our work considers select
ing candidate subsets that minimize TDT implementation costs. 

There have been significant advances in reliability predictions for 
complex systems in recent years. As of 2018, Yuan et al. introduced a 
statistical mechanism for reliability evaluation (Yuan et al., 2018). 
Using Bayesian networks (BN) they construct object-oriented represen
tations of subsystems which they utilize to construct a BN for propa
gating uncertainties about component conditions. These dynamic 
object-oriented bayesian networks (DOOBNs) facilitate ease of 
modeling since the connections between subsystems are concise and 
built from conversations between the modelers and the domain experts. 
Kumar et al. show using fuzzy set logic a method for computing reli
ability of series parallel systems (Kumar et al., 2020). In their survey, 
Pérez-Rosés outlines numerous other mechanisms that exist for reli
ability optimization and redundancy allocations on complex systems 
and over series parallel networks (Pérez-Rosés, 2018). 

3. Unmanned underwater vehicle for case study 

In Fig. 2 we show the low-cost vehicle with subsystem labels and 
components. We have chosen this vehicle as our case study system for 
two reasons: First, we have direct access to design specifications, bill of 
materials, and the system architects. Second, the system provides a 
baseline representation of a UUV. Without the added components and 
complexity of legacy commercial off-the-shelf systems, the experimental 
vehicle offers the minimal set of functioning components. As a result, the 
systems engineering process is simplified to complete retroactively. We 
acknowledge that for a more complex system this process would not be 
as straightforward, particularly since access to the original architects or 
maintainers may be severely limited. We argue those who perform 
routine maintenance can provide insight into the design and the com
ponents that are the most challenging to maintain. The system operators 
are also an excellent resource, since they have a better idea of how the 
system functions under normal or expected operating conditions, which 
helps inform the triage component selection process. The output of the 
process in this paper guarantees subsets of components maximizing 
reliability and minimizing digital twin development cost, but it does not 
say whether these components are the most challenging to maintain. 
Cost does not necessarily imply difficulty of maintenance. If the 
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component is challenging to reach, such as an electronics component in 
the interior of the hull, but is low cost like a resistor, this would be a 
component that is hard to maintain but low unit cost. While we concede 
that there is generally a labor cost associated with performing mainte
nance, here we do not consider this. We do not address maintainability 
directly in this work, but it should be considered during the discussion 
phase with decision makers. Future work will address maintainability in 
a more rigorous fashion by including a maintainability metric in the 
objective set. In Section 6, we discuss the use of this and other higher- 
level information which can be used to scale the optimal subsets of 
components provided by the MOOP in our process. 

The vehicle comprises 17 main subsystems. Here we do not make a 
distinction between a subsystem and a component. For a minimalist 
system like the vehicle, these can be used interchangeably. The com
ponents listed in Fig. 2 represent subsystems supporting communication 
between the vehicle and the operators, navigation, and intelligence. The 
communication subsystems are the acoustic modem transducer, acoustic 
modem electronics, and comms antenna contained in the handle. The 
navigation components are the passive sonar array, inertial measure
ment unit, satellite navigation, velocity sensor, and depth sensor. The 
intelligence subsystems support the higher level vehicle control, 
including path planning, ascending, descending, and waypoint naviga
tion. The primary intelligence is provided by the vehicle computer and 
electronics. All of these subsystems depend on the energy source pro
vided by the batteries. The components are assembled in the external 
housing, which is composed of the nose cone, front bulkhead, mid sec
tion, rear bulkhead, O-rings, and tail cone. The propeller and fins pro
vide propulsion and control, respectively. The only subsystem we refer 
to that is not shown in Fig. 2 is the propeller shroud, which is concentric 
with the propeller, and shields the propeller from any damage. Together, 
these subsystems constitute a minimalist UUV and provide the ideal 
experimental apparatus to test our decision process on selecting triage 
component sets for implementing digital twins. However, to understand 
the process for determining the triage components, we must first un
derstand the connections of the subsystems. We utilize an MBSE process 
to facilitate this understanding. 

4. Model-based systems engineering approach 

Ideally, MBSE models associated with physical systems are designed 
in the early stages of a project life cycle. This method captures full and 
accurate physical system information, capabilities, and design decisions 

in the model as the project evolves. It also permits MBSE modeling 
products to influence the evolving project. Retrofitting an MBSE model 
to a system that has already been designed and manufactured can be 
challenging. One of the challenges is collecting accurate data about the 
system requirements and physical components from documented re
sources. Those documents may be out of date or located in various lo
cations that may be difficult to access. Another challenge is attempting 
to develop an understanding of how and why the system’s components 
interact with each other based on analyzing the final design. To coun
teract these challenges, we initiated routine meetings with the vehicle 
engineers to collect the most current system information to help develop 
a vehicle CBM-based MBSE model. These discussions are an integral part 
in the overall process demonstrated in Fig. 3. Indeed, they permit the 
collection and organization of relevant reliability and cost estimating 
data required for implementing the triage component selection 
algorithms. 

Regardless of whether an MBSE model is generated at the start or the 
finish of its associated physical system’s creation, the design of an MBSE 
model mainly depends on the nature of the project, what the project is 
trying to achieve, what are the expected outputs of the project, and the 
resources available to the project during its life cycle. Another key 
aspect of an MBSE methodology is ensuring that the method provides a 
framework for specifying both the structure and operation of the project 
system and for analyzing its performance. Additionally, the steps taken 
in designing an MBSE model are often written in sequence, but many of 
them are executed in parallel. The same is true for the MBSE method
ology of this project. The MBSE method chosen for the vehicle digital 
twin project is a modified version of the methodology described 
throughout Friedenthal et al.‘s well-known text on MBSE in SysML 
(Friedenthal et al., 2015). The first step in retroactively applying an 
MBSE methodology is the identification of the core components of the 
system. As a result, the core components also constitute the core com
ponents of a digital twin, if one is implemented. Enterprise Architect (E. 
A.) is the MBSE software tool utilized to develop the model (Sparx 
Systems). We chose E.A. after a detailed trade study on the utility of 
various SysML implementations. We selected E.A. after determining that 
it aligns with industry use and supports the infrastructure for MBSE 
model life-cycle maintenance. An additional feature that assists the 
automation of our proposed process is E.A.‘s support for the XML Met
adata Interchange (XMI) format. This allows us to exchange the model 
with different MBSE software tools. It also allows us to easily parse the 
XMI formatted output for connectivity of the subsystems, which for a 

Fig. 2. (Color online) The UUV system under test with detailed subsystems. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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very large system proves formidable if undertaken by hand. 
The model’s package structure defines the organization hierarchy. In 

Fig. 4 we show this hierarchy. The packages in the model are organized 
based on the artifacts and elements they contain. Since we are informing 
the development of a digital twin for a UUV, our first step is to develop 
the requirements for the digital twin. These requirements closely track 
those of the actual system, since the twin is a virtual representation of 
the vehicle real-time system. According to Friedenthal et al., the initial 
phase of establishing requirements is implemented by generating re
quirements from a project’s mission statement or original “problem” 
concept that the project is trying to solve or answer. The modeling team 
facilitated the following efforts to obtain the most relevant current re
quirements: communicated with the vehicle’s initial designers and 
stakeholders to retrieve initial project requirements, met with the 
vehicle engineering team to refine the requirements to their current 
status, and generated requirement elements in the vehicle digital twin 
MBSE model in requirements diagrams. 

Table 1 shows the requirements gathered retroactively. These are 
shown here as tabular data but are extracted directly from the MBSE 
requirements diagram. We do not show the diagram for the sake of 
clarity. By including a requirements diagram in the MBSE model, we can 
trace the functionality of the subsystems to the original project re
quirements and also establish a working set of initial requirements for 
future DT development. The DTs constructed will have requirements 
that closely track those of the original subsystems, since for CBM pur
poses, any subsystem that stops functioning as expected will manifest 
the failure in the requirement. An example is a depth sensor, shown in 
Fig. 5. The depth sensor participates in localization and waypoint 

navigation. If the depth sensor malfunctions, then requirements 6 and 11 
are no longer met. Consequently, the sensor will no longer deliver depth 
data to the main vehicle computer, which is responsible for higher level 
planning and waypoint navigation. This depth data, shown as a red 
dotted item flow in Fig. 5, defines an interface that would be monitored 
through the data-driven DT, updating the DT’s learning model based on 
expected and actual functionality. 

The structural vehicle block elements in the MBSE model represent 
the physical components of the vehicle. We show the entire system 
composition from the MBSE process in Fig. 5. Block Definition Diagrams 
(BDDs) represent the physical components of the system. Next, the 
digital twin CBM physical components are specified in the model. This 
step involved two main phases: generating block element representa
tions of the physical components based on vehicle design documentation 
and adding data and energy flow connectors between appropriate 
components. For both phases, the UUV Digital Twin MBSE modeling 
team communicated with the vehicle engineers to verify and update 
designated CBM components and connections. 

According to Friedenthal et al., a key effort in designing systems 
involves performing various engineering analyses such as trade studies, 
sensitivity analysis, and design optimization (Friedenthal et al., 2015). It 
may include the analysis of performance, reliability, cost, and physical 
properties of the project system. MBSE modeling supports these types of 
analyses via SysML parametric modeling. Parametric models constrain 
the properties of a system, which can then be evaluated using available 
analysis tools. Constraints are expressed as equations, with parameters 
of the equations being bound to the properties of the project’s system. A 
parametric diagram within an MBSE model can be used to represent one 

Fig. 3. (Color online) Process flow for determining the triage components for implementation of digital twins. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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or more engineering analyses of a system’s design. To incorporate this 
capability, we performed the following: designed Internal Block Defi
nition (IBDs) diagrams for vehicle components in the MBSE model, in
tegrated parametric diagrams to support the IBDs and generate SysML 
relational connectors between them and the IBDs using ports, imple
mented constraint equations to govern CBM design of the digital twin 
version of the vehicle, and executed computational evaluations of the 
CBM design. We incorporated parametrics as an auxiliary task to facil
itate future reliability computations that can be taken directly from the 
MBSE model. 

4.1. Reliability parametric analysis 

As a part of the MBSE effort, we have included parametrics in the 
vehicle model. These parameters constrain the values of model param
eters, permitting the use of simulation tools to extract relevant model 
information. We utilize parametric analysis to produce a baseline value 
of the total system reliability, to which we compare our extracted reli
ability taken from connectivity assumptions. We utilize the National 
Institute of Standards (NIST) definition of reliability, which defines 
reliability as “The ability of a system or component to function under 
stated conditions for a specified period of time” (Ross et al., 2019). In the 
case of a UUV system, we apply this definition and define reliability as 
the ability for the vehicle to operate according to mission requirements 
for the duration of the mission’s operational time. The specific tasks 
enumerated under mission requirements include basic navigational ca
pabilities, such as navigating between waypoints, ascending and 
descending, and performing routine surface behaviors to establish 
communications. To capture the reliability of the vehicle, we utilize 
input from the system architects and data sheets about estimated sub
system reliabilities. Unfortunately, since the development and expanded 
use of the vehicle is in its nascency, we do not have experimental data 
from operational missions which is an alternative source of reliability 
determinations. Utilizing these values and analyzing subsystem con
nections we can calculate total system reliability utilizing the well 
known reliability functions defined by NIST (Tobias, 2013). Because we 
are modeling reliability in the normal operating period or Intrinsic 
Failure Period of the Bathtub Curve, we assume constant failure rates 
and an exponential distribution of subsystem reliabilities. The equation 
for component i’s reliability Ri is given as 

Ri(t)= e− λi t, (1)  

where t is the time in hours of operation, and λi is the failure rate of 

Fig. 4. (Color online) Model-based systems engineering structure of the UUV under test system model in Systems Modeling Language. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Generic requirements taken from the model-based systems engineering re
quirements diagram for the UUV.  

Requirement 
number 

Requirement text 

1 The UUV shall have modifiable behavior. 
2 The UUV shall be able to communicate subsurface with either 

acoustic communication or radio frequency. 
3 The UUV shall be able to communicate on the surface with 

either acoustic communication or radio frequency. 
4 The UUV shall have low cost reconfigurability. 
5 The UUV shall have a modular payload design. 
6 The UUV shall be capable of waypoint navigation. 
7 The UUV shall be able to operate in very shallow water. 
8 The UUV shall provide sensor payload options for end-users. 
9 The UUV shall be able to communicate subsurface. 
10 The UUV shall be able to communicate on the surface. 
11 The UUV shall be capable of subsurface waypoint navigation 

and GPS fixes. 
12 The UUV shall have open and modular data interfaces. 
13 The UUV shall be capable of specific runtimes. 
14 The UUV shall have a specific unit cost. 
15 The UUV shall have a specific range.  
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component i. The explicit dependence on time indicates that the reli
ability of the system is not fixed. However, for the purposes of our work, 
we assume that all reliability estimates are calculated with respect to a 
constant operation completion time top. To make the conversation more 
informative, we cast (1) in terms of the number of missions n. Rewriting 
(1) gives 

Ri(n)= e− λi topn. (2) 

We then estimate the mean time between failures (MTBF) in units of 
number of missions, to arrive at reliability estimates for operational 
mission duration. This makes the conversation with operators, who 
aren’t necessarily familiar with the exact numbers of failure rates and 
reliabilities, more informative by means of placing failures in context. 
An example would be, “After how many missions do you (the operator) 
need to realign or adjust the waterproof servos on the vehicle?” If the 
answer is every 25 missions, then if top = 2 ​ hr, the failure rate is 1/
50 ​ hr− 1, yielding a reliability of 

R
(
top = 2 hr

)
= e− 1

50 hr 2 hr ≈ 0.9231. (3) 

This simple calculation is a helpful approximation for complex 
analysis. By casting the reliability in units of number of missions, the 
operators and maintainers can inform the discussion much more easily, 
since the burden of the calculation falls on the operations analyst or 
system analyst. 

The overall reliability of a system depends on the network connec
tions. For N components attached in series, then the reliability of the 
subsystem is 

Rseries(t)=
∏N

i
Ri(t). (4) 

The reliability of the subsystem of components attached in parallel is 

Rparallel(t) = 1 −
∏N

i
(1 − Ri(t)). (5) 

The equations assume that the subsystems are statistically indepen
dent. Parallel subsystems typically refers to the same subsystem and 
indicates redundancy, where the failure of the subsystem is mitigated by 
the redundancy. Series subsystems define the connection between two 
different subsystems that are connected via single or multiple-data 
connections. The functionality of the different components results in 
the processing or utilization of the data for different purposes. One can 
think of these connections as an analogy to parallel and series resistors 
from electronics circuits. A series connections permits a current flow 
along a single path, whereas a parallel connection permits the division of 
current along multiple paths. Whereas in circuit analysis these connec
tions result from a transmitted current through physical connections, the 
connections of subsystems can be quite different and include any 
connection and the transfer of any data type. In the next section, we 
introduce how we define layered connectivity and how we automati
cally extract these connections from the output of the MBSE process. 

4.2. Extraction of network connectivity 

A natural result of performing an MBSE effort retroactively is the 
determination of how subsystems are connected to each other. Neces
sarily, connections can be abstract, for example the passage of energy, 
between a battery and a dependent electronic device. See Fig. 5 for an 
example of energy (shown as a blue dotted line) passing between the 
battery and multiple subsystems. However abstract, if the model is 
detailed enough to capture these connections, then utilizing the output 
of the MBSE we can extract the total system reliability, which we use as a 

Fig. 5. (Color online) Subset of model-based systems engineering structural components as block definition diagrams. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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primary input in the next section (Section 5) for performing our opti
mization of subsystem selection. We assume these connections establish 
the basis for calculating the total reliability as a product over (4) and (5). 
To extract those connections from the model, we assume a layered 
network topology. Each layer li defines how many subsystems are 
redundant within the layer. Within a redundant layer, we use (5) to 
calculate the reliability. Individual layers are assumed to be connected 
in series. This permits fast iteration over the network subsystems and 
allows us to construct a one dimensional representation of the network. 
We show the layers in Fig. 6. Notice that this permits an arbitrarily 
complex system to be captured in the one-dimensional data structure. 

In Fig. 6, subsystems are represented by black dots and labeled by si. 
Components s4…s7 and s9…s12 are in parallel and are redundant sub
systems. The remaining components are attached in series with the 
parallel subsystems. From this graphical representation, which closely 
mimics the representation one might see within a SysML model, we can 
extract the layer vector L. The layer vector is constructed from the 
cardinality of the subsets attached in series. Because s4…7 and s9…12 are 
attached in parallel, then the L4 and L6 vector elements equal 4. Written 
out, 

L= [1, 1, 1, 4, 1, 4], (6)  

where the number indicates the total number of redundant subsystems. 
The utility of this layer data structure will become apparent when we 
calculate reliability improvement expectations. 

5. Reliability improvement expectations 

We have argued thus far that one can utilize the output of the MBSE 
process to represent the underlying subsystem connections as a one 
dimensional data structure L. This in turn can be used to calculate the 
reliability of the system as a whole, since it is a discrete representation of 
the total system reliability. To show how L can be used to calculate the 
expected reliability improvements as a result of utilizing a digital twin to 
monitor subsystems, we introduce an MOOP to determine expected re
liabilities and cost estimates for implementing digital twins for the UUV 
subsystems. The main objectives we consider are the reliability differ
ence δR′R, which is the difference in reliabilities between the base system 
and the resulting system after implementing digital twins, and the total 
cost Ctot, which is the cost of implementing all digital twins within the 
triage subset. 

Problem 1. (Multi-objective optimization problem statement). 
For a system comprising N subsystems S = {s1, s2,⋯, sN} with re

liabilities R = {r1,r2,⋯,rN}, digital twin development costs C = {c1,c2,

⋯, cN}, and known reliabilities for components with corresponding 
digital twins R

′

= {r′1,r′2,⋯,r′N}, find binary indicator vectors xr and xc 

that maximize the reliability difference δR′ R := (R′

− R) and minimize 
total development cost Ctot subject to the constraints that the total 
number of nonzero elements in both xr and xc does not exceed N. The 
sets which satisfy both objective functions are the Pareto optimal sets. 
These provide the corresponding TDT set of components s∗. 

Stated as a bi-objective optimization problem 

minimize
xr∈X

δR′R = − (R′(xr) − R) (7)  

minimize
xc∈X

Ctot = xT
c c (8)  

subject to X ={0, 1}N (9)  

xT
r xr < N (10)  

xT
c xc < N. (11) 

Note that to facilitate ease of computation we have utilized the 
duality principle in optimization to convert the maximization of reli
ability improvement function to a minimization by multiplying by − 1. 
The objective function given by (7) represents the difference in reli
ability improvements, where the decision variable is given by xr. The 
function R′ yields the system reliability as a result of switching out the 
candidate set of components xT

r . The value R represents the total system 
reliability before improvements. This is calculated either from the MBSE 
model, using the parametric diagrams, or from the connectivity vector L. 
In theory, (7) should be negative for every subset xr, assuming that the 
digital twins are designed properly and function no worse than the real- 
time system. This is a reasonable assumption since the digital twins are 
engineered by a team of experts, typically those with data science or 
machine learning backgrounds and those with hardware and software 
expertise in the component area. The variable c is a vector equivalent of 
the set of implementation costs C . 

5.1. Numerical approximation methods 

We compare two optimization methods. These are chosen partially 
out of convenience and for illustrative purposes. We emphasize that the 
methods introduced here are not novel or in anyway prescriptive. Any 
method that solves Problem 1 suffices for producing the TDT subsets. 
The first is a direct computation of the subsets, since the number of 
subsystem components is reasonably small that employing a direct 
method of computation is feasible, similar to the method employed by 
Custódio et al. (2011). This direct calculation iterates over the entire 
component space, which for a practical standpoint for a UUV is not 
unreasonable. However, if the number of components grows sufficiently 
large (N ≈ 20) then more efficient methods must be considered, such as 
Gray code methods (Savage, 1997) or evolutionary algorithms. The 
direct computation method is shown in the procedure BRUTE

FORCEOPTIMIZATION (). In Algorithm 1, we show this method and its 
auxiliary procedures to calculate all candidate subsets of reliabilities and 
costs. Though we do not provide the pseudocode for the procedure 
ALLCOMBINATIONS (), it is a relatively simple combinatorial task to generate 
all possible combinations, since one can use the binomial coefficient 
(

n
k

)

as a starting point, producing up to k = n − 1 combinations to 

satisfy (10) and (11). Once all possible combinations of subsystem re
liabilities and costs are generated, then we use OBJECTIVE to return the 
total system reliability as a result of utilizing digital twins R′. The 
OBJECTIVE () procedure closely follows (7), in that it utilizes the connec
tivity information, provided by L, to determine how subsystems and 
components should be treated as in series or parallel. Once all possible 

Fig. 6. (Color online) Layered network topology.  
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combinations of reliability improvements and costs are calculated, they 
are stored in δ and Ctot, respectively. The keen observer will note that 
this optimization routine has generated the entire feasible region of the 
problem. To identify only those non-dominated or Pareto solutions, we 
utilize an additional procedure GENERATEPARETOFRONT () shown in Algo
rithm 3. The algorithm works by sorting in ascending order the Ctot and δ 
vectors. From these, we iterate in ascending order, recording at each 
step if the reliability difference δ(i) is less than at least one point already 
sampled. This produces the non-dominated point set. 

The second method we use is the genetic-algorithm-based normal 
boundary intersection (GANBI) method. The GANBI method is particu
larly well-suited for engineering design problems, because unlike a 
standard evolutionary algorithm, which produces a solution set at each 
iteration, the GANBI algorithm produces a solution that approximates 
the Pareto front at each iteration (Wettergren, 2006). The GANBI al
gorithm serves as a preprocessor for existing genetic algorithms. We 
utilize the non-dominated sorting genetic algorithm (NSGA) as the 
baseline algorithm, for which we use the GANBI preprocessor. The 
interested reader should consult the work of Wettergren for a detailed 
account of the GANBI algorithm, including a formal algorithm descrip
tion of the approximation step (Wettergren, 2006). Note that we are 
comparing the GANBI algorithm to the direct computation to show that 
for a small system with N ≈ 10 components, the methods (direct and 
evolutionary) are equivalent. We also introduce the GANBI algorithm to 
allow an extension of this work for very large systems, with complex 
connection layers. Indeed we rely on this method for our real-world case 
study, which we compare to the well known NSGA. We show the 
pseudocode of the GANBI algorithm in GANBI() of Algorithm 4. The key 
distinction between the GANBI algorithm and traditional evolutionary 
approaches is shown at Line 2 in the procedure INDIVIDUALMAXIMA (). The 
GANBI algorithm relies on the calculation of the minima for the indi
vidual objective functions, without regard to the other objectives. If x1 
denotes the minimum of δ and x2 denotes the minimum of Ctot, then 

X= [x1, x2], (12)  

is the vector that contains the minima for the reliability improvement 
and total cost objectives. Correspondingly, we can write the matrix fmin 
as 

f min =

[
0 δ(x2) − δ(x1)

Ctot(x1) − Ctot(x2) 0

]

. (13) 

This connects the individual minima through the line segment 
defined by the difference of points. The convex hull of individual 
minima (or “CHIM” from Wettergren’s work) is given by convex com
binations of (13). These are given by 

CHIM:=
{

f minB+X : B= [b1, b2]
T
, (14)  

∑

i
bi = 1, bi ≥ 0

}

(15) 

The CHIM provides a coarse approximation to the Pareto front pro
duced by the reliability difference and total cost objectives. The purpose 
of this is the creation of supporting objectives f given by NBIOBJECTIVE (). 
The supporting objectives divide the hull into Npts, which approximate 
the vector set normal to the points along the line segment connecting the 
two minima. Effectively this creates a point set that can be “pushed out” 
normal to the segment and eventually meet the Pareto front of the bi- 
objective problem. Creating the supporting objective functions actu
ally increases computational time, but it provides a better approxima
tion to the Pareto front than evolutionary approaches without the 

preprocessing. These modified objective functions are then passed into 
the traditional NSGA procedure for which we have declared the pro
cedures but not the implementation of the code. These are shown as 
NEXTGEN() and EVALPOP() in Algorithm 4. We once again call GEN

ERATEPARETOFRONT () (Line 8) to do a final sort on the Pareto frontier. 

Algorithm 1. Direct computation of reliability difference

Algorithm 2. Reliability from layer connectivity

Algorithm 3. Producing Pareto front from objectives
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Algorithm 4. GANBI algorithm

5.2. Approximation results for example system 

Before we consider the vehicle in our case study, it is instructive to 
utilize our notional system of N = 12 components to demonstrate how 
the algorithms perform, understanding the results of the algorithms, and 
placing into context the results as they apply to selecting the TDTs and 
informing decision makers about the trade offs. 

The first step is the enumeration of existing subsystem reliabilities 
R , reliabilities after implementing digital twins R

′

, and the estimated 
cost to implement a digital twin C . These are summarized in Table 2. To 
simulate a realistic scenario, we have created a randomized set of R , 
where some components are noticeably “worse,” or unreliable in com
parison with others, as much as an order of magnitude worse. The 
upgraded reliabilities are also randomized. These, however, are ran
domized within [ri,1.0], where ri ∈ R . This enforces the assumption that 
the reliability after implementing a digital twin can be no worse than the 
original. The implementation costs are also randomized within the range 
[500,5000], with arbitrary units. The connectivity of the subsystems is 
given by (6). Using these inputs to the BRUTEFORCEOPTIMIZATION () we 
generate the Pareto front in Fig. 7a as well as show the entire feasible 
solution space. The black star markers indicate the Pareto solutions, and 
the black dots indicate a dominated feasible solution. The vertical axis 
represents the percentage increase in reliability as a result of imple
menting the TDTs. The abnormally large increases result from markedly 
improved reliabilities for the exceptionally unreliable subsystems. The 
total system reliability before upgrades is R = 0.029. The vertical axis is 
the scaled version of the objective function (7) or 

δR′ R
R

× 100. (16) 

We have also plotted on the same axes the Pareto front and the 
feasible solution space for the GANBI and NSGA methods, which are not 
required for this simplistic example of N = 12 components. The feasible 
space for the GANBI algorithm is shown by the blue crosses. The Pareto 
front for the GANBI algorithm is shown by the blue squares. The NSGA 

feasible space is shown by red diamonds, while the Pareto front is shown 
by the red squares. We have used Ngen = 500 generations in both the 
GANBI and NSGA methods and a population size of Npop = 50 for the 
example system. After several numerical runs, we determined that 
neither larger populations nor more generations improved the Pareto 
frontier approximation. However, by plotting the GANBI algorithm it 
illustrates that we can approximate the Pareto front reasonably well. The 
benefit of using the evolutionary method comes when one considers 
complex systems with N ≈ 20, where it is computationally challenging 
(if not impossible) to iterate over all possible combinations of sub
systems. Therefore, the GANBI algorithm can be used for these larger 
complex systems. In Fig. 7a–c we have plotted the Pareto fronts from the 
direct, GANBI, and NSGA methods. In Fig. 7d we have also extracted two 
example subsets sA and sB from the Pareto front to show the trade off 
between reliability improvement and cost. Note that sA = {1,3,8} has a 
total cost of Ctot = 6691 ​ arb. ​ unit, while sB =

{1,2,3, 4,8, 9, 10,11, 12} has a total cost of Ctot = 26862 ​ arb. ​ unit. As 
expected, the more components that are selected for digital twin 
monitoring the higher the reliability improvement and the higher the 
cost. As a result, a large part of the process is prioritizing reliability vs 
cost. For critical projects that remove humans from harm, no expense 
should be spared when considering the reliability improvement, 
whereas a project that does rely on the system for critical tasking but 
does not depend on the system for delivering humans from harm, should 
expect to have reduced development costs while achieving significant 
reliability improvements. 

5.3. Approximation results for unmanned underwater vehicle 

Now we consider the vehicle in our case study. We show the initial 
reliabilities and improvements based on discussions from the UUV 
maintainers and operators. These values are shown in Table 3 below. 

We show the resulting optimization and extraction of candidate 
TDTs s∗ in Fig. 8. In Fig. 8a, we have plotted the Pareto frontier from the 
GANBI algorithm, shown as blue squares, as well as the NSGA method, 
shown as red circles. We have not utilized the direct computation, since 
the system of N = 17 components is sufficiently complex that the 
feasible space is too large to calculate directly. We have also extracted 
three candidate TDT subsets, shown as points “A,” “B,” and “C.” These 
are summarized in Table 4. The initial system reliability calculated from 
R is 0.43. This comes from using a series connected L vector with 17 
components. Since the vehicle is a minimalist UUV, there are no 
redundant components, and therefore the total system reliability de
pends on the individual subsystems, as in (4). This initial reliability in
dicates a failure rate of λ = 0.42 ​ hr− 1 (calculated using top = 2 ​ hr). 
This gives a MTBF of 2.37 ​ hr or roughly after every mission some 
component stops functioning as expected. Using this number we are able 
to calculate expected system reliabilities for the subsets sA, sB, and sC 
shown in Table 4. 

While these subsets are selected at random, they raise key questions 
that need to be answered by continued discussions with decision makers. 
First, there is a 750 000 ​ arb. ​ unit cost difference between options A 
and B, with a 20% difference in total system reliability. Does the reli
ability improvement merit the additional cost burden? Should option C 
be prioritized for its simplicity and low cost? At this point it is natural to 
address these questions using higher-level information provided by 
discussions with decision makers. Without the added information, 
strictly, these options are all equivalent. Something to consider is the 
aforementioned maintainability of these components. Which of these is 
far more challenging to maintain, requiring significant downtime? The 
components that present the longest downtimes and appear in the TDT 
candidate subsets could be prioritized, since the maintenance could be 
scheduled when the vehicle is not required for operations. If the UUV is 
selected for deep water drilling platform inspections, then the reliability 
improvement is likely a significant factor due to the inherent risk of 

Table 2 
Parameters for system with N = 12 components.  

S  R [ ̃] R ′ ​ [ ̃] C [arb. ​ unit]

1 0.95 0.96 1159 
2 0.72 0.90 4367 
3 0.40 0.98 3069 
4 0.83 1.00 2991 
5 0.13 0.58 1988 
6 0.06 0.46 2713 
7 0.08 0.15 4495 
8 0.16 0.22 2463 
9 0.32 0.88 2275 
10 0.30 0.73 4184 
11 0.01 0.89 4690 
12 0.54 0.63 1664  

D.T. Kutzke et al.                                                                                                                                                                                                                               



Ocean Engineering 223 (2021) 108629

12

having people perform this job. If the UUV is used for shallow water 
oceanographic surveys, then the reliability is likely not as an important 
factor as the implementation cost and option C will prevail. 

We also show how often each component appears in a TDT candidate 
subset in Fig. 8b. The histogram shows that there are some differences 
between the GANBI and the NSGA methods used here. Nevertheless, 
there are standout components that appear consistently more often. 
Note that s = 7, 9, and ​ 12 appear more often. This is expected since 

these have the lower initial reliabilities. These are also the components 
that require maintenance most often, according to the vehicle main
tainers. As a result, these components are natural candidates for TDT 
monitoring. Equipped with these subsets, the conversation with decision 
makers will be more directed and productive, since the selection of the 
TDT subsets is bolstered by inputs from multiple stakeholders and team 
members, all of whom contribute in a meaningful way, guiding the se
lection process with relevant information. Moreover, the MBSE effort 
establishes the necessary data acquisition interfaces and physical in
terfaces that directly influence the implementation of DTs once a TDT 
subset is downselected from the candidates. This shortens the design and 
development timeline since at a minimum subject matter experts or 
those responsible for DT development will have requirements 
established. 

5.4. Numerical performance comparison 

For both the example system and the UUV system data analyzed in 
Subsections 5.2 and 5.3 the direct computation, NSGA, and GANBI 
methods were performed using custom code developed in MATLAB® 
R2013a on a computer running Windows 10, with 8 GB RAM, and two 
Intel® Core™ i5-4200M CPUs @ 2.50 GHz (MATLAB, 2013). Using a 
N = 12 and N = 17 system as a benchmark case with randomly gener
ated reliabilities r ∈ [0.50,1] and costs c ∈ [100,10×103] ​ arb. ​ unit we 
show averaged computation times for the three methods in Table 5 
based on 10 individual runs of each algorithm. The table also contains 
computational complexities for the three algorithms based on N sub
systems. According to Curry and Dagli, the NSGA algorithm is 

Fig. 7. (Color online) Percent increase in total system reliability from the use of digital twins for the triage components vs total implementation cost for N = 12 
components. In (d) the circles labeled “A” and “B” indicate Pareto front solutions. The components to be upgraded are sA = {1,3,8} and sB =

{1,2, 3, 4,8, 9,10, 11, 12}, where “A” has a cost of Ctot = 6691 ​ arb. ​ unit and “B” has a cost of Ctot = 26 862 ​ arb. ​ unit. The number of generations used is Ngen =

500, the population size is Npop = 50, and the number of points used in the GANBI method is Npts = 5. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 3 
Parameters for unmanned underwater vehicle.  

S  Name R [ ̃] R ′ ​ [ ̃] C [103 ​ arb. ​ unit]

1 Acoustic modem electronics 0.9608 0.99 95 
2 Acoustic modem transducer 0.996 0.9967 142 
3 Nose cone 0.996 0.9967 56 
4 Tail cone 0.996 0.9967 56 
5 Mid section 0.996 0.9967 56 
6 Handle (mast) 0.9608 0.9802 150 
7 Batteries 0.9048 0.9512 46 
8 Depth sensor 0.996 0.9967 90 
9 Fins 0.6703 0.9802 90 
10 Propeller 0.9802 0.99 66 
11 Vehicle computer 0.996 0.9967 145 
12 Static ballast 0.9048 0.9512 100 
13 Waterproof servos 0.9231 0.99 150 
14 Propeller shroud 0.9802 0.9967 46 
15 Front bulkhead 0.9934 0.9967 49 
16 Rear bulkhead 0.9934 0.9967 49 
17 O-Rings 0.996 0.9967 47  
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O (NoN3
pop), where No is the number of objective functions. In this case, 

there are two objective functions, indicating that the complexity is 
O (2 ⋅N3

pop). The GANBI algorithm is a preprocessor for the NSGA, so its 
complexity is that of the NSGA plus a term that accounts for the addi
tional helper objective functions (Npts + 2)⋅N3

pop. The leading order in 

the large population size limit is Npts⋅N3
pop. The distinction must be made 

that although the GANBI method requires additional steps to compute 
the supporting objectives, it gives a better approximation to the true 
pareto front of the MOOP. The direct method requires the computation 
of all possible combinations of subsystems, which strictly is 2N − 1, 
accounting for the constraint that not all subsystems can be selected. 
This term is dominated by 2N, so we can neglect the − 1. This is done for 
every objective. Every objective is then compared with every other 
objective. For small values of N≪Npop, it is clear that the direct method 
is far better than the evolutionary algorithms, since the complexity 
scales with cubic population size. 

The values shown in Table 5 are for a notional subsystem with N = 7, 
N = 12, and N = 17 subsystems. We have argued thus far that for a 
small number of subsystems N ≈ 10 the direct method is the most effi
cient, whereas for a large number of subsystems N ≈ 20 evolutionary 
algorithms such as the NSGA and the NSGA with GANBI are the most 
efficient. The keen observer will note that the computational times 
shown in the table suggest that the direct method is fast, even as the 
number of subsystems exceeds the lower limit. In fact it would seem that 
the direct method is an order of magnitude faster than the times of the 
evolutionary algorithms for the N = 12 case. This directly contradicts 
the complexities shown in the table as well, since a simple calculation for 
the N = 12 case yields O (1011) for the direct method, and O (105) and 
O (106) for NSGA and GANBI, respectively. This is because of two pri
mary factors: First, the direct method computes all combinations of costs 
and reliabilities, which for N = 12 is 4095 different combinations, ac
counting for the constraints. This is it, essentially, since a simple com
parison is performed to determine the non-dominated solutions. Second, 
the evolutionary algorithms on the other hand must initialize a random 
population of chromosomes using Npop = 50 with length N, evaluate 
fitness, reproduce, crossover, mutate, and reevaluate for Ngen = 500 
generations. Assuming the three algorithms have been programmed to a 
similar level of efficiency, then the evolutionary algorithms take longer 
from a computational perspective simply because of the number of steps 
involved. It is therefore more appropriate to utilize computational 
complexity in the large N limit and recognize that for a small number of 
subsystems, the direct method is more efficient because of how few steps 
there are programmatically. 

Fig. 8. (Color online) We show the Pareto frontiers and candidate subsets in (a) and the resulting frequency of appearance of individual components in candidate 
subsets in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 4 
Candidate TDT subsets sA, sB, and.sC  

sA  Name sB  Name sC  Name 

1 Acoustic modem 
electronics 

1 Acoustic modem 
electronics 

9 Fins 

5 Mid section 7 Batteries   
6 Handle (mast) 9 Fins   
7 Batteries 12 Static ballast   
8 Depth sensor     
9 Fins     
10 Propeller     
11 Vehicle computer     
12 Static ballast     
13 Waterproof servos     
14 Propeller shroud     
16 Rear bulkhead     

R′(r) 0.80  0.72  0.63 
δR′R
R

100  85%   66%   46%  

Ctot  1 083 000   331 000   90 000   

Table 5 
Computation time and complexities for direct, NSGA, and GANBI computation 
methods using N = 7, N = 12, and N = 17 subsystems with No = 2, Npop = 50, 
Ngen = 500, and Npts = 5. The computation times were calculated by averaging 
over 10 runs of randomly configured subsystems.  

Algorithm Computation time [s] Complexity 

N = 7  N = 12  N = 17  

Direct 0.01 2.29 2082.35 O (No ⋅(2N)
No+1

)

NSGA 48.76 46.83 49.19 O (No ⋅N3
pop)

GANBI 57.24 63.68 63.87 O (Npts ⋅N3
pop)
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6. Discussion 

We have introduced a generalizable process for determining the 
subset of components from a SoS that when monitored through digital 
twins yield the maximal increase in total system reliability and minimize 
the cost entrance hurdle for implementing the digital twins. We have 
utilized our process on a real-life application for an unmanned under
water vehicle. Through a combination of experimentally derived system 
reliabilities and an MBSE effort, where numerous discussions were held 
with the vehicle development team, we have been able to demonstrate 
the applicability of this relatively simple approach to TDT selection. The 
implications for the industry of unmanned underwater vehicles are that 
through the process developed in the paper, groups that rely on UUVs for 
critical tasking which would otherwise place humans in direct harm can 
use the process for retroactively developing digital twins to increase 
system reliability, while staying within budgetary constraints. Our 
process considers input from a variety of stakeholders and system users 
to ensure that the most accurate information is solicited for inclusion in 
the process. We have not introduced variables, data, or parameters that 
are not readily available or those that would not be determined 
regardless of the TDT selection process. The system reliabilities R are 
usually well known from experimental test data, component data sheets, 
or can be determined from like-system analysis. The reliabilities as a 
result of utilizing a twin to monitor the corresponding component R

′

can be estimated based on a decrease in failure rates and discussions 
with subject matter experts responsible for implementing the digital 
twin. The project management team in collaboration with the subject 
matter experts can provide cost estimates C for developing digital twins 
for the subsystems based on known parameters such as labor rates, 
auxiliary software and IT costs, and historical development and testing 
timelines. These parameters and the outputs of the connectivity analysis 
from the MBSE suffice to perform a selection process on the subsystems 
to be monitored. As we have shown, higher level information is required 
to prioritize the subset of TDTs s∗ that are selected as the requisite sys
tems for implementing digital twins, such as budgetary constraints or 
reliability requirements. The implications for the field of reliability 
studies are a generalizable process that is straightforward to utilize for a 
variety of systems that would like to leverage digital twin technology for 
enhancing reliability of legacy systems. Our process is particularly well- 
suited for those who do not know which components to select for digital 
twin monitoring, must rely on legacy systems for critical tasking, and do 
not have the budget to design, develop, test, and deploy complete digital 
twins for their systems. 
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